
Sensors and Actuators A, 32 (1992) 491-498 491

Data structures for multi-sensor integration

A. Ruiz, D. Guinea, L. J. Barrios, P. Bustos and F. Betancourt
Institute de Automitica Industrial (CSIC), CN III, Km 22,800 Lu Poveda Arganda de1 Rey, 285&l Madrid (Spain)

Abstract

This paper analyzes data organization requirements for multi-sensor information processing. It proposes solutions
for both abstract data structures and storage formats. We formalize the concept of general sensor information and
define a data structure able to support sensor information obtained by a wide spectrum of applications. The problem
of off-line storage is studied and two different solutions are proposed. Finally, we comment on some guidelines for
designing real-time applications under our approach.

1. Introduction

There is a marked contrast between the latest
smart sensors, which are able to measure a broad
set of physical magnitudes, and the actual possibil-
ities of extraction of meaning and interpretation of
the data acquired by them to carry out intelligent
and complex tasks [1,2]. Many current sensor
applications may be expressed in terms of the
‘artificial perception’ paradigm: to infer the state
of the system (working universe) from the sensor
data.

This paper presents some ideas on data struc-
tures and organization in order to implement an
efficient scheme for multi-sensor information inte-
gration,

The state of the system
Given a certain system, we use a set of sensors

to monitor relevant physical or chemical magni-
tudes, expected to be related to states of interest.
These states may correspond to control decisions
over the system:

Binary decision. There exist only two possible
states in the working universe: ‘Yes-No’, ‘Cor-
rect working-Faulty’, etc.

Class~jkation problems. There is a finite set of
disjoint options for the system: phoneme recogni-
tion, character recognition, object identification,
detection of impact regions, etc.

Estimation of continuous variables. In this case
we need to determine the value of a certain

09244247/92/$5.00

parameter or magnitude. It can be seen as a clas-
sification problem with infinite states (a contin-
uum of classes) e.g., tool wear in machine tools
[3], detection of objects position, etc.

Arbitrary patterns generation. The most general
result which can be obtained by sensor infor-
mation processing is a set of numbers with a
certain structure, as complex as needed: signal
filtering, image enhancement, associative memo-
ries, etc.

Many practical applications are classification
problems (finite number of states of interest).
Continuous magnitudes estimation may be han-
dled using this approach after a discretization
process. The perceived state will be normally used
in a following planning stage of control actions.
In simple applications it is possible to associate
directly each state with a control action (no plan-
ning required).

Sensor information
Let f(x,t) be the value of some physical magni-

tude at time t, in a space position x. In general
this magnitude will not be directly measurable, so
we have to use sensors or transducers. Therefore
we acquire m(x,t) somewhat related with f. If the
transfer function of the transducer is known, it is
possible to calculate f from m. In any case, the
perception objective must be reached by process-
ing the directly available measure m(x,t). This
may cause several problems: data consistency be-
tween different sensors, calibration, etc. There

@ 1992 - Elsevier Sequoia. All rights reserved

492

may be also time dependencies in sensor re-
sponse: drifts, change of climatic conditions, dis-
functions, etc. These difficulties could be treated
including all changing factors in the sensor
transfer function, calibrating the system before
data acquisition or even ignoring them when
they are not very serious.

We consider a sensor as a function m(x,t)
which obtains the value of some physical vari-
able at the position (xJ). Without lack of gener-
ality, we will only consider scalar sensors. Each
component of a vectorial sensor may be re-
garded as an independent scalar sensor. Sensor
data need to be processed by digital devices, so
m values must be discretized into a finite number
of levels. Also, the ‘sensor function’ m(x,t) will
be defined only for specific time instants, usually
periodic (t = nT), according to a constant sam-
pling rate.

On the other hand, let Cl(t) be the region of
the physical space where the sensor m, (x,t) has a
well-defined value. Ci(t) is the directly observable
region for the ith sensor. Only after some pro-
cessing, it should be possible to obtain informa-
tion related to remote regions. If C,(t) consists
of just one point in the space, m, is a point
sensor (temperature or pressure sensors, micro-
phones, etc.). If C,(t) is a finite set of points,
mXt) may be referred to as a structured sensor.
Depending on spatial ordering of Ci(t) there are
array sensors with one, two, three dimensions,
etc. (video cameras, artificial skins, etc.). We
don’t have to consider an infinite number of
points in Ci(t) because it is impossible to per-
form an infinite number of measures. Any struc-
tured sensor may be divided into a number of
point sensors. If C,(t) does not depend on the
time t, mi will be a static sensor.

Any arbitrary set of sensors can be redefined
as a set of point scalar sensors mi(x,t) for
i=l... N. The information generated by them
is a sequence of elemental observations with the
general form: [time, position, sensor, measure] :
[t x i mi(x,t)]

Z= (. . , Plxlimi(xl,tl)l, [f2Wmj(wdl,. . .)
which includes all the information acquired by
the multi-sensor system. Unfortunately it is not
easy to design processing tools for so general a
data structure. It is sensible to allow some sim-
plifications.

2. Towards a practical data structure

When the space coordinates of the sensors do
not depend explicitly on time (e.g., static sensors
with constant coordinates) it is not necessary to
include them in the sequence Z, being redundant
information.

Z=(.. . [tl i mi(t,)I, [tzj mj (tdl . . .)

Assuming we have the measures of all sensors at
time instant t:

I=(.. . [t ml (t)ml(t) . . . mN(t)] . . .)

Finally, when the measure instants are known
(i.e., periodic), it is possible to remove the time in
the components of I:

Z=(...[m,mz...m,],[m,mz...m,]...)

Under the above-mentioned assumptions, which
hold for a set of synchronized static sensors,
their data may be represented by a sequence of
vectorial observations. Space and time locations
are not relevant, so they do not appear explic-
itly. Those vectorial observations may be consid-
ered as typical patterns as used by classical
pattern recognition techniques. In particular,
they can be considered as observations of a
multi-dimensional random variable, its probabil-
ity density function depending on the state of
the working universe.

Several artificial perception applications may be
handled with the previous model. However, in
most cases practical difficulties appear:

mobile sensors: changes in space coordinates of
observations complicate data interpretation tasks;

timing: if sensors generate data at arbitrary
times (e.g., different sampling rates, specific trig-
gers, random events, etc.) it is not always possible
to obtain, at a certain time t, complete observation
patterns (not all components are defined at the
same time);

noise: even if we could always get complete
patterns, the effect of noise (present in every real
system), decreases reliability of a single observa-
tion;

sensor dynamics: real sensors usually show a
‘time evolution’. Their responses to a specific
stimulus have a certain duration, so a unique
measure will not always be enough to determine
the state of the system. We should take into

493

account their responses during a period of time. It
is important to decide whether this period length
must be constant or variable, whether successive
measures must overlap or not, etc.

These problems arise from the requirement of
an easy data processing and from acquisition con-
straints.

In the following we will assume that sensor
data will be processed by examples based pat-
tern classifiers, appropriated for a wide spectrum
of recognition problems. These techniques re-
quire a set of examples representative enough
(in a statistical sense) of the states to be recog-
nized. This set can be more easily built provided
there are a common structure and acquisition
conditions for the sensor examples used in train-
ing, testing and real-time execution. Therefore,
these techniques are convenient for static sensors
with periodic sampling times. For example,
working with mobile sensors may require a
training set too high to cover all the relevant
situations.

Timing problems, noise and sensor dynamics
may be handled in a unified way, defining an
elemental piece of sensor information as the set
of successive observations (time series) obtained,
in such a way that they constitute a repetitive
entity. We can group data corresponding to a
time interval which is a common multiple of all
acquisition periods. The sampling rate for a sig-
nal must be, at least, twice its fastest frequency,
and the total length of the time series acquired is
related to the lowest frequency of interest.
Hence, sensor information is structured in a se-
quence of elemental packets, each of them asso-
ciated to an initial time instant and carrying the
sensor responses generated during a specified
time interval.

The proposed patterns structure could be pro-
cessed by a broad set of techniques. However,
many acquisition systems include both periodic
and asynchronous variables, triggered by certain
events in the working universe. Integrating sensors
with timing problems may be managed using
different approaches. For instance, we could con-
sider separately synchronous and asynchronous
signals making an independent recognition stage
and fusing results at a higher level. Another option
may be the generation of complete patterns, as-
signing the most safe data (obtained in preceding
times) to the missing values. Both solutions can be

easily supported by the proposed pattern struc-
ture.

Data inconsistency, irregular data structures,
lack of normalized conditions, are basic prob-
lems in sensor data integration and interpreta-
tion. Frequently, pattern recognition is a mathe-
matically solved subject, provided there exists a
statistically valid training set of patterns. Essen-
tially, it is a question of learning time and a
compromise between response time and success
rate.

The most used and useful recognition tech-
niques are supervised: it is necessary to provide
the class or state the patterns belong to. As we
saw in the preceding Section, this state may be
specified with different degrees of complexity, de-
pending on the nature of the recognition prob-
lem. The sensor data structure should be flexible
enough to allow different alternatives for class
specification.

On the other hand, fast sampling rates imply
too-large elementary data packets for classical
recognition tools. This suggests a previous stage,
usually called feature extraction, to reduce the
amount of raw data. This is an open research line,
not very satisfactorily solved nowadays except in
very simple situations. The idea is to find a trans-
formation from the pattern space to a new, low
dimensional feature space in which overlapping
between classes does not increase too much.
Therefore, a good sensor data structure must be
able to allocate both original and transformed
data.

‘Data’ should be separated from ‘processing
commands’ in order to allow different perceptual
(classification) objectives from the same original
data. Evaluation of alternative processing schemes
is only possible‘ if data are not biased towards
particular processing approaches. For instance, it
is not satisfactory to specify in the data struc-
ture parameters as iteration numbers, metrics to
be used, etc., required by some classification
tools.

Finally, it is reasonable to include significative
acquisition and environmental conditions in the
data structure as well as remarks and commen-
taries provided by the user for documentation
purposes.

Following previous requirements we propose a
particular sensor data structure. It has been used,
with minor modifications, in refs. 3 and 4.

494

The sequence of recepts
The whole data structure employed to support

arbitrary sensor information through all process-
ing stages is called ‘sequence of recepts’. We take
the term recept from Sobolewski in ref. 5.

A recept is the elementary sensor observation
or example, i.e., the data set generated by the
sensors during a time interval at a specific posi-
tion. It is a substructure located in a memory
region shared by acquisition devices and process-
ing programs. This structure is updated and
modified by application-specific acquisition driv-
ers, feature extraction programs and recognition
tools.

The ‘recept structure’ contains the following
fields (Fig. 1):

(1) Structure
-Number of sensors (ZV);
- Identljiers of each of them (type string);
-Amount of data acquired by each sensor (pos-
sibly multi-dimensional: 256, 64 x 64, 8 x 8 x 3,
etc.) ;

(2) Data addressing
-Acquisition coordinates (for each sensor s: x,,
Y,, z,);
--Initial time of acquisition (t);
-Acquisition conditions for each sensor: offset,
amplifying factor, sampling rate (Ufs, SC,, dT,)
-Data read: the array x&i) contains the ith
measure (binary counts in the AD converter) of
the sth sensor in the current recept, corresponding
to time = t + i dt(s). The physical magnitude value
m is computed easily: m = (x(s,i) - Ofs)Sc,.
Multidimensional sensors may be allocated as

Fig. 1. The recept structure.

one-dimensional vectors by proper indices trans-
formation;
-ExternaI conditions which depend on the con-
crete sensorial system. We assume that the recept
contains a list of attributes with its values (nu-
meric or symbolic). For instance: ‘speed’ = 18.5;
‘material’ = B3, etc. If these values vary very fre-
quently, they could be considered as conventional
sensors.

(3) Learning
-Recept type: there are two options: ‘teacher’ and
‘unknown’. The former includes the class it be-
longs to, so it can be used in supervised learning
stages, for training or testing. The latter is not
labelled with any class. It can be used only in real
work of the system or for non-supervised learning
(cluster techniques).
-Class code: this field specifies how the class or
state is coded (for ‘teacher’ recepts): by means of
integer numbers, real vectors, binary vectors, sym-
bols, etc. Sometimes it is necessary to include the
code type (BCD, positional, etc.) in order to inter-
pret binary vectors. Finally, it is reasonable to
specify complementary information as the maxi-
mum number of classes, length of the binary code,
etc.
-Class (in ‘teacher’ recepts): to designate the
class of the recept, according to the class code
field. A probability factor could be included to
express the confidence in that classification for the
recept. Another option is to maintain a list of the
probabilities of all classes (a priori), which can be
updated (to become a posteriori) by the recogni-
tion tools.

(4) Miscellaneous
-Documentation: literal information provided by
the user (one or more strings).
-User defined: it is reasonable to allow user-
defined fields to contain significative information
specific to the current application.

Those fields constitute the ‘recept structure’. It
should be noted that only a part of them changes
during system operation, in particular the data
array x(s, i) and the class of the recept, among
others. Certain fields (defining the recept template:
number of sensors, data length of them, the class
codification selected, etc.) are set up at system
initialization.

Now we describe the operations of the whole
structure (Fig. 2), ‘the sequence of recepts struc-
ture’.

495

(1) Sequence opening: we must provide two
identifiers.
-Sequence name: to specify which real sensor
system is selected. If that name does not refer to
any real system, we assume that the sequence of
recepts is stored in a disk file. Initialization tasks
of acquisition drivers are executed.
-Features extraction program filename (or com-
mand string): to perform a transparent processing
stage over the recepts adapting them to the needs
of the program that opens the sequence (i.e., a
pattern classifier). If this identifier is the null
string (“), no transformation of the recepts will
be done.

(2) Get new recept: to ask the real acquisition
driver or the disk file for the latest recept gener-
ated by the sensors. When the new recept is
available the RECEPT structure is updated and
transformed according to the features extraction
program specified in the sequence opening opera-
tion. Therefore any program may use, automati-
cally, a vector of features instead of big amounts
of raw data.

(3) Sequence close: to free resources, close files,
etc.

-

m
‘I 1

Fig. 2. Sequence of recepts operations.

3. Storage formats

Working the sequences of recepts obtained in
real time from real sensors is not an easy task. It
is necessary to use specialized architectures, digital
signal processors, etc. However, implementation of
the previous operations is easier when we restrict
our attention to stored data files. We cannot lose
data, no matter how long is the processing time
duration. Therefore it is possible to compare and
evaluate in a conventional computer (off line)
different processing strategies to solve each recog-
nition task.

It seems necessary to define a disk file format to
store sequences of recepts. The basic problem in
the analysis of different options is to avoid storing
redundant information in order to minimize file
sizes and optimize data addressing.

A first solution is to use files whose base type is
the same recept structure (probably a record).
Recepts access time is short but, unfortunately,
constant array length of some programming lan-
guages forces an over-sized structure, wasting disk
space.

Another option is to define a formal language
or format for ASCII files with key words, head-
lines and the like, in which we only have to
include relevant information (changing from one
recept to another). This solution presents low
storage optimization and slow (sequential) access
to recepts. However, files are legible and easily
modifiable. Figure 3 shows the formal storage
language LDP (perception data language) used in
several applications by our research group, as
well as a short example file written in this format
(Fig. 4).

We could alternatively use multiple files, a set-
up file with format specifiers as sizes, codes, and
so on, common for the whole sequence, which is
logically attached to one or more data files (in-
teger type for raw data and real type for fea-
tures) which optimally store the information. It
presents just a small organization problem, and
it is very useful for applications with very large
amounts of data. However, files are not easily
editable.

Although the advantages of a common structure
for both raw and processed data is clear, we must
notice an important fact: a great deal of data
processing is made over vectors of features. We
only work with original sensor data at first stages.

QLOBALDESCRIPTK)N

4nit>

1 I

Fig. 3. LDP syntax.

Therefore, separating raw and processed data files
provides generality to the sensor systems without
loss of access efficiency to small vectors of fea-
tures.

OLDSAL DESCIIPTIOY
"lqacta owr n artificial akin. 1-t rnr~y . 20,~.5Ocm.S
Accquirtian circuit. Iartw rrwpln OV.C aLI 7 skin ~011s.

STRUCT

SlOWALE 1
SIZES 200
lNTEGEI CLASS TOlAL 7
DESCRIPT

"200 slrpl.8 rcqrirrd rftw trigSor.
Clrsrr corrrpond to rrprct cells.

DATA

I DT 100 112 100 130 . . . (200 data) . . . 97 101
CLASS 1 I

DT 102 1OA 128 110 . . . (200 data) . . . 127 OS
CLASS 6 il
. . .
. . . lmr8 rocspts) . . .
. . .

II MN “c.Ll L ha. bun &mm@”
01 82 87 1OOS 95 . . . (2M dmta) . . . 111 115
CLASS 4 1
. . .
. . . (nor* rocepts) . . .
. . .

STRUCT

BINARY CLASS LENGIN 5 BCD CODE

DATA

I Dl 101 lb1 314 w . . . (200 6t8) . . . 117 96
CLASS 101 1
. . .
. . . (nor* meapt*) . . .
. . .

SlRLMx

UNKNOUN CLASS

DAYA

I DT 102 101 128 110 . . . (200 &t(l) . . . 127 M I

I Df 101 105 110 115 . . . (200 data) . . . W 100 #

. . . (mar8 rwaptm)

. . .
Df 100 100 W W . . . (2OD dam) . . . 187 203 x

EWD

Fig. 4. LDP example file.

As an example of this sensor data storing
scheme, we will show the files system used for
storing the two kinds of information: original and
processed, used in our latest research work at
TAT.

(I) Raw data

(filename).J
Description of raw data structure. It is an

ASCII file with, at least, the following informa-
tion:
(n,) total number of recepts stored
{s) number of sensors

497

(n,) data length of sensor 1
(n2) data length of sensor 2

Class information

(filename.C*)
. . . .

(n,) data length of sensor s
The class associated with each recept, either

It could include identifiers of each sensor, as
original (files *.R and *.J) or processed (files *.I

well as acquisition conditions (sampling rate, etc.).
and *.F) may be stored in simple files of byte, to
easily handle finite classification tasks.

(filename).R We can maintain several classification files in

This file contains the raw data itself. It should order to admit different perception objectives from

be, for instance, a file of integer because raw a common experimental base. For instance, the

sensor data always come from analog to digital learning stage in recognition of words from digi-

converters (ADC). The organization of this file is tized speech would require a file called voice.CW,

very sample. A list of recepts:

1st recept 2nd recept 1 . .lethreceptI eof
I I I I 1

where each recept contains the time series obtained by the all sensors:

I I I I I I I I
dll d12 . . . dlnl d21 d22 . . . d2n2 . . . 11

_
dsl . . . dsns

I I I I I I I I

1st sensor 2nd sensor

(2) Vectors of features

(filename).1
This ASCII file contains the number of pro-

cessed recepts (vectors of features) stored and the
length of these vectors (number of features ex-
tracted from the recept):

<nr>
<nf>

It could include information describing the pro-
cess performed over the sequence of recepts, fea-
ture identifiers, etc.

(filename).F
Contains all the vectors of features. It is afile of

real, because a feature is the result of some arbi-
trary processing over raw data or previous fea-
tures. Its structure is just a list of vectors of
features:

sth sensor

different from the file voice.CS, used to train the
classifier to detect the speaker from the same
digitized speech sequence of recepts.

4. Concluding remarks

A remarkable fact of the proposed approach is the
fusion of sensor data acquisition and processing.
Given a sensor system we provide a definite features
extraction program, which will be automatically
executed after every new recept acquisition. Any
module (e.g., pattern classifiers, statistical packets,
graphic representation programs, etc.) can access
data transformed according to its own needs, e.g.,
significative features extraction, redefinition of

fll ’ f12’ . . . ‘flp t21’ t22’ . . . ‘t2p
II I I I 8

. . . fel’ fe2’ .._ ‘fep

vector of features
extracted from

1st recept 2nd recept eth recept

recept classes, normalization or discretization of
variables, and so on. Sensors virtually generate
significative features instead of raw data.

Unfortunately, the main advantage of this ap-
proach (coherent data access and processing for
state identification) is unrealistic for real-time ap-
plications using general purpose computers. An
interesting solution is to delegate acquisition and
hard processing stages to digital signal processors
(DSP). The master computer instructs the DSP
(sending it a certain command string) for collect-
ing raw data and executing the appropriate pro-
cessing on them, generating recepts in the form of
vectors of features in a shared memory area. These
(optionally) processed recepts may be used both in
design stages (feature selection, evaluation of clas-
sification tools performance, etc.) and for real-time
operation identifying the class or state of unknown
recepts.

It is reasonable to take advantage of object
oriented extensions (e.g., streams) of most popular
languages to implement sensor data structures as
well as to define the storing format and drivers
both for real sensors and data files.

Finally, to approach a new sensor integration
task, it is essential to know a suitable estimation of
certain design parameters required for develop-
ment stages and decisive for system performance.
Some of them are:

(1) Which concepts, states or classes are to be
recognized from sensor information?

(2) Which sensors (number and nature) seem to
be appropriate for this task? What is their proper
structure?

(3) Are there any bibliographic references

about useful features to extract from raw sensor
data?

(4) Is it possible to build a training set of
recepts covering statistically all possible situations
for the system?

(5) Is it necessarily a real-time work of the
sensor system? In that case, what is the perfor-
mance of acquisition and processing hardware?

Acknowledgements

The authors would like to acknowledge the sup-
port provided by the Comunidad Autbnoma de
Madrid (CAM) under the project C 198/90 and by
the Comisi6n Interministerial de Ciencia y Tecnolo-
gia (CICYT) under the project ROB89-1130-CE.

References

1 Y. F. Zheng, Integration of multiple sensors into a robotic system
and its performance evaluation, IEEE Trans. Robotics Automation,
5 (5) (Oct.) (1989).

2 A. M. Agogino and S. Srinivas, Multiple sensor expert systems for
diagnostic, reasoning, monitoring and control of mechanical sys-
tems, Mech. Syst. Signal Process., 2 (2) (1988) 165- 185.

3 D. Guinea, A. Ruiz and L. J. Barrios, Multi-sensor integration: an
automatic feature extraction and state identification methodology
for tool wear estimation, Proc. First CIRP Workshop of Intelligent
Manufacturing Systems, Budapest, Hungary, Mar. 6-8, 1991, Sem-
inars on Learning in IMS, pp. 159-175.

4 A. Ruiz, Mecanismos de integracibn multisensorial: un sistema de
percepcibn arficial (Multi-sensor information schemes: an artificial
perception system), Doctoral Thesis, Universidad Complutense de
Madrid, Spain, Nov. 1990.

5 M. W. Sobolewski, Percept knowledge-base systems, in I. Plander
(ed.), Artificial Intelligence and Information-Control Systems of
Robots, Elsevier, Amsterdam, 1987.

