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Abstract 

This paper analyzes data organization requirements for multi-sensor information processing. It proposes solutions 
for both abstract data structures and storage formats. We formalize the concept of general sensor information and 
define a data structure able to support sensor information obtained by a wide spectrum of applications. The problem 
of off-line storage is studied and two different solutions are proposed. Finally, we comment on some guidelines for 
designing real-time applications under our approach. 

1. Introduction 

There is a marked contrast between the latest 
smart sensors, which are able to measure a broad 
set of physical magnitudes, and the actual possibil- 
ities of extraction of meaning and interpretation of 
the data acquired by them to carry out intelligent 
and complex tasks [ 1,2]. Many current sensor 
applications may be expressed in terms of the 
‘artificial perception’ paradigm: to infer the state 
of the system (working universe) from the sensor 
data. 

This paper presents some ideas on data struc- 
tures and organization in order to implement an 
efficient scheme for multi-sensor information inte- 
gration, 

The state of the system 
Given a certain system, we use a set of sensors 

to monitor relevant physical or chemical magni- 
tudes, expected to be related to states of interest. 
These states may correspond to control decisions 
over the system: 

Binary decision. There exist only two possible 
states in the working universe: ‘Yes-No’, ‘Cor- 
rect working-Faulty’, etc. 

Class~jkation problems. There is a finite set of 
disjoint options for the system: phoneme recogni- 
tion, character recognition, object identification, 
detection of impact regions, etc. 

Estimation of continuous variables. In this case 
we need to determine the value of a certain 
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parameter or magnitude. It can be seen as a clas- 
sification problem with infinite states (a contin- 
uum of classes) e.g., tool wear in machine tools 
[3], detection of objects position, etc. 

Arbitrary patterns generation. The most general 
result which can be obtained by sensor infor- 
mation processing is a set of numbers with a 
certain structure, as complex as needed: signal 
filtering, image enhancement, associative memo- 
ries, etc. 

Many practical applications are classification 
problems (finite number of states of interest). 
Continuous magnitudes estimation may be han- 
dled using this approach after a discretization 
process. The perceived state will be normally used 
in a following planning stage of control actions. 
In simple applications it is possible to associate 
directly each state with a control action (no plan- 
ning required). 

Sensor information 
Let f(x,t) be the value of some physical magni- 

tude at time t, in a space position x. In general 
this magnitude will not be directly measurable, so 
we have to use sensors or transducers. Therefore 
we acquire m(x,t) somewhat related with f. If the 
transfer function of the transducer is known, it is 
possible to calculate f from m. In any case, the 
perception objective must be reached by process- 
ing the directly available measure m(x,t). This 
may cause several problems: data consistency be- 
tween different sensors, calibration, etc. There 
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may be also time dependencies in sensor re- 
sponse: drifts, change of climatic conditions, dis- 
functions, etc. These difficulties could be treated 
including all changing factors in the sensor 
transfer function, calibrating the system before 
data acquisition or even ignoring them when 
they are not very serious. 

We consider a sensor as a function m(x,t) 
which obtains the value of some physical vari- 
able at the position (xJ). Without lack of gener- 
ality, we will only consider scalar sensors. Each 
component of a vectorial sensor may be re- 
garded as an independent scalar sensor. Sensor 
data need to be processed by digital devices, so 
m values must be discretized into a finite number 
of levels. Also, the ‘sensor function’ m(x,t) will 
be defined only for specific time instants, usually 
periodic (t = nT), according to a constant sam- 
pling rate. 

On the other hand, let Cl(t) be the region of 
the physical space where the sensor m, (x,t) has a 
well-defined value. Ci(t) is the directly observable 
region for the ith sensor. Only after some pro- 
cessing, it should be possible to obtain informa- 
tion related to remote regions. If C,(t) consists 
of just one point in the space, m, is a point 
sensor (temperature or pressure sensors, micro- 
phones, etc.). If C,(t) is a finite set of points, 
mXt) may be referred to as a structured sensor. 
Depending on spatial ordering of Ci(t) there are 
array sensors with one, two, three dimensions, 
etc. (video cameras, artificial skins, etc.). We 
don’t have to consider an infinite number of 
points in Ci(t) because it is impossible to per- 
form an infinite number of measures. Any struc- 
tured sensor may be divided into a number of 
point sensors. If C,(t) does not depend on the 
time t, mi will be a static sensor. 

Any arbitrary set of sensors can be redefined 
as a set of point scalar sensors mi(x,t) for 
i=l... N. The information generated by them 
is a sequence of elemental observations with the 
general form: [time, position, sensor, measure] : 
[t x i mi(x,t)] 

Z= (. . , Plxlimi(xl,tl)l, [f2Wmj(wdl,. . . ) 
which includes all the information acquired by 
the multi-sensor system. Unfortunately it is not 
easy to design processing tools for so general a 
data structure. It is sensible to allow some sim- 
plifications. 

2. Towards a practical data structure 

When the space coordinates of the sensors do 
not depend explicitly on time (e.g., static sensors 
with constant coordinates) it is not necessary to 
include them in the sequence Z, being redundant 
information. 

Z=(.. . [tl i mi(t, )I, [tzj mj (tdl . . . ) 

Assuming we have the measures of all sensors at 
time instant t: 

I=(.. . [t ml (t)ml(t) . . . mN(t)] . . . ) 

Finally, when the measure instants are known 
(i.e., periodic), it is possible to remove the time in 
the components of I: 

Z=(...[m,mz...m,],[m,mz...m,]...) 

Under the above-mentioned assumptions, which 
hold for a set of synchronized static sensors, 
their data may be represented by a sequence of 
vectorial observations. Space and time locations 
are not relevant, so they do not appear explic- 
itly. Those vectorial observations may be consid- 
ered as typical patterns as used by classical 
pattern recognition techniques. In particular, 
they can be considered as observations of a 
multi-dimensional random variable, its probabil- 
ity density function depending on the state of 
the working universe. 

Several artificial perception applications may be 
handled with the previous model. However, in 
most cases practical difficulties appear: 

mobile sensors: changes in space coordinates of 
observations complicate data interpretation tasks; 

timing: if sensors generate data at arbitrary 
times (e.g., different sampling rates, specific trig- 
gers, random events, etc.) it is not always possible 
to obtain, at a certain time t, complete observation 
patterns (not all components are defined at the 
same time); 

noise: even if we could always get complete 
patterns, the effect of noise (present in every real 
system), decreases reliability of a single observa- 
tion; 

sensor dynamics: real sensors usually show a 
‘time evolution’. Their responses to a specific 
stimulus have a certain duration, so a unique 
measure will not always be enough to determine 
the state of the system. We should take into 
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account their responses during a period of time. It 
is important to decide whether this period length 
must be constant or variable, whether successive 
measures must overlap or not, etc. 

These problems arise from the requirement of 
an easy data processing and from acquisition con- 
straints. 

In the following we will assume that sensor 
data will be processed by examples based pat- 
tern classifiers, appropriated for a wide spectrum 
of recognition problems. These techniques re- 
quire a set of examples representative enough 
(in a statistical sense) of the states to be recog- 
nized. This set can be more easily built provided 
there are a common structure and acquisition 
conditions for the sensor examples used in train- 
ing, testing and real-time execution. Therefore, 
these techniques are convenient for static sensors 
with periodic sampling times. For example, 
working with mobile sensors may require a 
training set too high to cover all the relevant 
situations. 

Timing problems, noise and sensor dynamics 
may be handled in a unified way, defining an 
elemental piece of sensor information as the set 
of successive observations (time series) obtained, 
in such a way that they constitute a repetitive 
entity. We can group data corresponding to a 
time interval which is a common multiple of all 
acquisition periods. The sampling rate for a sig- 
nal must be, at least, twice its fastest frequency, 
and the total length of the time series acquired is 
related to the lowest frequency of interest. 
Hence, sensor information is structured in a se- 
quence of elemental packets, each of them asso- 
ciated to an initial time instant and carrying the 
sensor responses generated during a specified 
time interval. 

The proposed patterns structure could be pro- 
cessed by a broad set of techniques. However, 
many acquisition systems include both periodic 
and asynchronous variables, triggered by certain 
events in the working universe. Integrating sensors 
with timing problems may be managed using 
different approaches. For instance, we could con- 
sider separately synchronous and asynchronous 
signals making an independent recognition stage 
and fusing results at a higher level. Another option 
may be the generation of complete patterns, as- 
signing the most safe data (obtained in preceding 
times) to the missing values. Both solutions can be 

easily supported by the proposed pattern struc- 
ture. 

Data inconsistency, irregular data structures, 
lack of normalized conditions, are basic prob- 
lems in sensor data integration and interpreta- 
tion. Frequently, pattern recognition is a mathe- 
matically solved subject, provided there exists a 
statistically valid training set of patterns. Essen- 
tially, it is a question of learning time and a 
compromise between response time and success 
rate. 

The most used and useful recognition tech- 
niques are supervised: it is necessary to provide 
the class or state the patterns belong to. As we 
saw in the preceding Section, this state may be 
specified with different degrees of complexity, de- 
pending on the nature of the recognition prob- 
lem. The sensor data structure should be flexible 
enough to allow different alternatives for class 
specification. 

On the other hand, fast sampling rates imply 
too-large elementary data packets for classical 
recognition tools. This suggests a previous stage, 
usually called feature extraction, to reduce the 
amount of raw data. This is an open research line, 
not very satisfactorily solved nowadays except in 
very simple situations. The idea is to find a trans- 
formation from the pattern space to a new, low 
dimensional feature space in which overlapping 
between classes does not increase too much. 
Therefore, a good sensor data structure must be 
able to allocate both original and transformed 
data. 

‘Data’ should be separated from ‘processing 
commands’ in order to allow different perceptual 
(classification) objectives from the same original 
data. Evaluation of alternative processing schemes 
is only possible‘ if data are not biased towards 
particular processing approaches. For instance, it 
is not satisfactory to specify in the data struc- 
ture parameters as iteration numbers, metrics to 
be used, etc., required by some classification 
tools. 

Finally, it is reasonable to include significative 
acquisition and environmental conditions in the 
data structure as well as remarks and commen- 
taries provided by the user for documentation 
purposes. 

Following previous requirements we propose a 
particular sensor data structure. It has been used, 
with minor modifications, in refs. 3 and 4. 
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The sequence of recepts 
The whole data structure employed to support 

arbitrary sensor information through all process- 
ing stages is called ‘sequence of recepts’. We take 
the term recept from Sobolewski in ref. 5. 

A recept is the elementary sensor observation 
or example, i.e., the data set generated by the 
sensors during a time interval at a specific posi- 
tion. It is a substructure located in a memory 
region shared by acquisition devices and process- 
ing programs. This structure is updated and 
modified by application-specific acquisition driv- 
ers, feature extraction programs and recognition 
tools. 

The ‘recept structure’ contains the following 
fields (Fig. 1): 

(1) Structure 
-Number of sensors (ZV); 
- Identljiers of each of them (type string); 
-Amount of data acquired by each sensor (pos- 
sibly multi-dimensional: 256, 64 x 64, 8 x 8 x 3, 
etc.) ; 

(2) Data addressing 
-Acquisition coordinates (for each sensor s: x,, 
Y,, z,); 
--Initial time of acquisition (t); 
-Acquisition conditions for each sensor: offset, 
amplifying factor, sampling rate (Ufs, SC,, dT,) 
-Data read: the array x&i) contains the ith 
measure (binary counts in the AD converter) of 
the sth sensor in the current recept, corresponding 
to time = t + i dt(s). The physical magnitude value 
m is computed easily: m = (x(s,i) - Ofs)Sc,. 
Multidimensional sensors may be allocated as 

Fig. 1. The recept structure. 

one-dimensional vectors by proper indices trans- 
formation; 
-ExternaI conditions which depend on the con- 
crete sensorial system. We assume that the recept 
contains a list of attributes with its values (nu- 
meric or symbolic). For instance: ‘speed’ = 18.5; 
‘material’ = B3, etc. If these values vary very fre- 
quently, they could be considered as conventional 
sensors. 

(3) Learning 
-Recept type: there are two options: ‘teacher’ and 
‘unknown’. The former includes the class it be- 
longs to, so it can be used in supervised learning 
stages, for training or testing. The latter is not 
labelled with any class. It can be used only in real 
work of the system or for non-supervised learning 
(cluster techniques). 
-Class code: this field specifies how the class or 
state is coded (for ‘teacher’ recepts): by means of 
integer numbers, real vectors, binary vectors, sym- 
bols, etc. Sometimes it is necessary to include the 
code type (BCD, positional, etc.) in order to inter- 
pret binary vectors. Finally, it is reasonable to 
specify complementary information as the maxi- 
mum number of classes, length of the binary code, 
etc. 
-Class (in ‘teacher’ recepts): to designate the 
class of the recept, according to the class code 
field. A probability factor could be included to 
express the confidence in that classification for the 
recept. Another option is to maintain a list of the 
probabilities of all classes (a priori), which can be 
updated (to become a posteriori) by the recogni- 
tion tools. 

(4) Miscellaneous 
-Documentation: literal information provided by 
the user (one or more strings). 
-User defined: it is reasonable to allow user- 
defined fields to contain significative information 
specific to the current application. 

Those fields constitute the ‘recept structure’. It 
should be noted that only a part of them changes 
during system operation, in particular the data 
array x(s, i) and the class of the recept, among 
others. Certain fields (defining the recept template: 
number of sensors, data length of them, the class 
codification selected, etc.) are set up at system 
initialization. 

Now we describe the operations of the whole 
structure (Fig. 2), ‘the sequence of recepts struc- 
ture’. 
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(1) Sequence opening: we must provide two 
identifiers. 
-Sequence name: to specify which real sensor 
system is selected. If that name does not refer to 
any real system, we assume that the sequence of 
recepts is stored in a disk file. Initialization tasks 
of acquisition drivers are executed. 
-Features extraction program filename (or com- 
mand string): to perform a transparent processing 
stage over the recepts adapting them to the needs 
of the program that opens the sequence (i.e., a 
pattern classifier). If this identifier is the null 
string (“), no transformation of the recepts will 
be done. 

(2) Get new recept: to ask the real acquisition 
driver or the disk file for the latest recept gener- 
ated by the sensors. When the new recept is 
available the RECEPT structure is updated and 
transformed according to the features extraction 
program specified in the sequence opening opera- 
tion. Therefore any program may use, automati- 
cally, a vector of features instead of big amounts 
of raw data. 

(3) Sequence close: to free resources, close files, 
etc. 

- 

m 
‘I 1 

Fig. 2. Sequence of recepts operations. 

3. Storage formats 

Working the sequences of recepts obtained in 
real time from real sensors is not an easy task. It 
is necessary to use specialized architectures, digital 
signal processors, etc. However, implementation of 
the previous operations is easier when we restrict 
our attention to stored data files. We cannot lose 
data, no matter how long is the processing time 
duration. Therefore it is possible to compare and 
evaluate in a conventional computer (off line) 
different processing strategies to solve each recog- 
nition task. 

It seems necessary to define a disk file format to 
store sequences of recepts. The basic problem in 
the analysis of different options is to avoid storing 
redundant information in order to minimize file 
sizes and optimize data addressing. 

A first solution is to use files whose base type is 
the same recept structure (probably a record). 
Recepts access time is short but, unfortunately, 
constant array length of some programming lan- 
guages forces an over-sized structure, wasting disk 
space. 

Another option is to define a formal language 
or format for ASCII files with key words, head- 
lines and the like, in which we only have to 
include relevant information (changing from one 
recept to another). This solution presents low 
storage optimization and slow (sequential) access 
to recepts. However, files are legible and easily 
modifiable. Figure 3 shows the formal storage 
language LDP (perception data language) used in 
several applications by our research group, as 
well as a short example file written in this format 
(Fig. 4). 

We could alternatively use multiple files, a set- 
up file with format specifiers as sizes, codes, and 
so on, common for the whole sequence, which is 
logically attached to one or more data files (in- 
teger type for raw data and real type for fea- 
tures) which optimally store the information. It 
presents just a small organization problem, and 
it is very useful for applications with very large 
amounts of data. However, files are not easily 
editable. 

Although the advantages of a common structure 
for both raw and processed data is clear, we must 
notice an important fact: a great deal of data 
processing is made over vectors of features. We 
only work with original sensor data at first stages. 
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Fig. 3. LDP syntax. 

Therefore, separating raw and processed data files 
provides generality to the sensor systems without 
loss of access efficiency to small vectors of fea- 
tures. 

OLDSAL DESCIIPTIOY 
"lqacta owr n artificial akin. 1-t rnr~y . 20,~.5Ocm.S 
Accquirtian circuit. Iartw rrwpln OV.C aLI 7 skin ~011s. 

STRUCT 

SlOWALE 1 
SIZES 200 
lNTEGEI CLASS TOlAL 7 
DESCRIPT 

"200 slrpl.8 rcqrirrd rftw trigSor. 
Clrsrr corrrpond to rrprct cells. 

DATA 

I DT 100 112 100 130 . . . (200 data) . . . 97 101 
CLASS 1 I 

# DT 102 1OA 128 110 . . . (200 data) . . . 127 OS 
CLASS 6 il 
. . . 
. . . lmr8 rocspts) . . . 
. . . 

II MN “c.Ll L ha. bun &mm@” 
01 82 87 1OOS 95 . . . (2M dmta) . . . 111 115 
CLASS 4 1 
. . . 
. . . (nor* rocepts) . . . 
. . . 

STRUCT 

BINARY CLASS LENGIN 5 BCD CODE 

DATA 

I Dl 101 lb1 314 w . . . (200 6t8) . . . 117 96 
CLASS 101 1 
. . . 
. . . (nor* meapt*) . . . 
. . . 

SlRLMx 

UNKNOUN CLASS 

DAYA 

I DT 102 101 128 110 . . . (200 &t(l) . . . 127 M I 

I Df 101 105 110 115 . . . (200 data) . . . W 100 # 

. . . (mar8 rwaptm) 

. . . 
# Df 100 100 W W . . . (2OD dam) . . . 187 203 x 

EWD 

Fig. 4. LDP example file. 

As an example of this sensor data storing 
scheme, we will show the files system used for 
storing the two kinds of information: original and 
processed, used in our latest research work at 
TAT. 

(I) Raw data 

(filename).J 
Description of raw data structure. It is an 

ASCII file with, at least, the following informa- 
tion: 
(n,) total number of recepts stored 
{s) number of sensors 
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(n,) data length of sensor 1 
(n2) data length of sensor 2 

Class information 

(filename.C*) 
. . . . 

(n,) data length of sensor s 
The class associated with each recept, either 

It could include identifiers of each sensor, as 
original (files *.R and *.J) or processed (files *.I 

well as acquisition conditions (sampling rate, etc.). 
and *.F) may be stored in simple files of byte, to 
easily handle finite classification tasks. 

(filename).R We can maintain several classification files in 

This file contains the raw data itself. It should order to admit different perception objectives from 

be, for instance, a file of integer because raw a common experimental base. For instance, the 

sensor data always come from analog to digital learning stage in recognition of words from digi- 

converters (ADC). The organization of this file is tized speech would require a file called voice.CW, 

very sample. A list of recepts: 

1st recept 2nd recept 1 . .lethreceptI eof 
I I I I 1 

where each recept contains the time series obtained by the all sensors: 

I I I I I I I I 
dll d12 . . . dlnl d21 d22 . . . d2n2 . . . 11 

_ 
dsl . . . dsns 

I I I I I I I I 

1st sensor 2nd sensor 

(2) Vectors of features 

(filename).1 
This ASCII file contains the number of pro- 

cessed recepts (vectors of features) stored and the 
length of these vectors (number of features ex- 
tracted from the recept): 

<nr> 
<nf> 

It could include information describing the pro- 
cess performed over the sequence of recepts, fea- 
ture identifiers, etc. 

(filename).F 
Contains all the vectors of features. It is afile of 

real, because a feature is the result of some arbi- 
trary processing over raw data or previous fea- 
tures. Its structure is just a list of vectors of 
features: 

sth sensor 

different from the file voice.CS, used to train the 
classifier to detect the speaker from the same 
digitized speech sequence of recepts. 

4. Concluding remarks 

A remarkable fact of the proposed approach is the 
fusion of sensor data acquisition and processing. 
Given a sensor system we provide a definite features 
extraction program, which will be automatically 
executed after every new recept acquisition. Any 
module (e.g., pattern classifiers, statistical packets, 
graphic representation programs, etc.) can access 
data transformed according to its own needs, e.g., 
significative features extraction, redefinition of 

fll ’ f12’ . . . ‘flp t21’ t22’ . . . ‘t2p 
II I I I 8 

. . . fel’ fe2’ .._ ‘fep 

vector of features 
extracted from 

1st recept 2nd recept eth recept 



recept classes, normalization or discretization of 
variables, and so on. Sensors virtually generate 
significative features instead of raw data. 

Unfortunately, the main advantage of this ap- 
proach (coherent data access and processing for 
state identification) is unrealistic for real-time ap- 
plications using general purpose computers. An 
interesting solution is to delegate acquisition and 
hard processing stages to digital signal processors 
(DSP). The master computer instructs the DSP 
(sending it a certain command string) for collect- 
ing raw data and executing the appropriate pro- 
cessing on them, generating recepts in the form of 
vectors of features in a shared memory area. These 
(optionally) processed recepts may be used both in 
design stages (feature selection, evaluation of clas- 
sification tools performance, etc.) and for real-time 
operation identifying the class or state of unknown 
recepts. 

It is reasonable to take advantage of object 
oriented extensions (e.g., streams) of most popular 
languages to implement sensor data structures as 
well as to define the storing format and drivers 
both for real sensors and data files. 

Finally, to approach a new sensor integration 
task, it is essential to know a suitable estimation of 
certain design parameters required for develop- 
ment stages and decisive for system performance. 
Some of them are: 

(1) Which concepts, states or classes are to be 
recognized from sensor information? 

(2) Which sensors (number and nature) seem to 
be appropriate for this task? What is their proper 
structure? 

(3) Are there any bibliographic references 

about useful features to extract from raw sensor 
data? 

(4) Is it possible to build a training set of 
recepts covering statistically all possible situations 
for the system? 

(5) Is it necessarily a real-time work of the 
sensor system? In that case, what is the perfor- 
mance of acquisition and processing hardware? 
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